
Micromega Corporation 1 Revised 2008-08-29

uM-FPU V3.1 Support Software

MPLAB C Compiler for
dsPIC DSC or PIC24

Introduction
This document describes the support software for using the uM-FPU V3.1 floating point coprocessor with Microchip
dsPIC DSC or PIC24 microcontrollers and the MPLAB C Compiler. For a full description of the uM-FPU V3.1
chip, please refer to the uM-FPU V3.1 Datasheet and uM-FPU V3.1 Instruction Reference. Application notes are
also available on the Micromega website.

uM-FPU V3.1 Support Software
Several files are provided for interfacing the uM-FPU V3.1 chip with the MPLAB C Compiler.

fpu_spi.c
This file contains all of the low-level support routines for interfacing with the uM-FPU V3.1 chip using
the master SPI serial interface on the dsPIC DSC or PIC24 microcontroller. Descriptions of all of the C
callable routines are provided below.

fpu_print.c
This file contains various print utility routines for sending data to stdout. Descriptions of all of the C
callable routines are provided below.

fpu.h
This header file includes fops.h to define all of the uM-FPU V3.1 opcodes, matrix operations and FFT
operations. It also defines the FPU status bits and provides function prototypes for all of the C callable
routines in fpu_spi.c and fpu_print.c. It should be included in any C program that calls the FPU
support routines.

fops.h
This header file is included by fpu.h and defines symbols for all uM-FPU V3.1 opcodes, matrix
operations and FFT operations.

template.c
This file provides an example of the initializing the FPU, and can be used as a starting point for new
programs.

Various sample programs are also provided with the support software.

Micromega Corporation 2 uM-FPU V3.1 and dsPIC or PIC24 C Compiler

Micromega Corporation 3 uM-FPU V3.1 and dsPIC or PIC24 C Compiler

Configuring the Support Software
The following definitions are located in the fpu_spi.c file. They must be modified as required to match the target
configuration. The SPI_PPRE and SPI_SPRE symbols define the primary and secondary pre-scale value for the SPI
clock frequency. They should be set so that the maximum SPI clock frequency doesn’t exceed 5 MHz.

//-------------------- SPI definitions --
// *** change these definitions to match target configuration ***

#define FCY 29480000UL // clock frequency: 29.48 MHz
#include <libpic30.h>

#define SPISTAT SPI1STATbits // SPI status register
#define SPICON SPI1CONbits // SPI control register
#define SPIBUF SPI1BUF // SPI data buffer

#define SPI_SCLK PORTBbits.RB6 // SPI SCLK pin
#define SPI_SDI PORTBbits.RB5 // SPI SDI pin
#define SPI_SDO PORTBbits.RB4 // SPI SDO pin

#define SPI_PPRE 3 // SPI clock primary pre-scale
#define SPI_SPRE 2 // SPI clock secondary pre-scale

Function Descriptions for fpu_spi.c

fpu_reset
unsigned char fpu_reset(void);

To ensure that the microcontroller and the FPU are synchronized, a reset call must be done at the start of every
program. The fpu_reset routine resets the FPU, confirms communications, and returns the sync character
(0x5C) if the reset is successful. A sample reset call is included in the template.c file.

fpu_wait
void fpu_wait(void);

The FPU must have completed all instructions in the instruction buffer, and be ready to return data, before sending
an instruction to read data from the FPU. The fpu_wait routine checks the ready status of the FPU and waits until
it is ready. The print routines check the ready status, so calling fpu_wait before calling a print routine isn’t
required, but if your program reads directly from the FPU using one of the fpu_write functions, a call to
fpu_wait is required prior to sending the read instruction. An example of reading a byte value is as follows:

fpu_wait();
fpu_write(LREADBYTE);
dataByte = fpu_readByte();

Description:
• wait for the FPU to be ready
• send the LREADBYTE instruction
• wait for the read setup delay
• read a byte value and store it in the variable dataByte

The uM-FPU V3.1 chip has a 256 byte instruction buffer. In most cases, data will be read back before 256 bytes
have been sent to the FPU. If a long calculation is done that requires more than 256 bytes to be sent to the FPU, an
Fpu_Wait call should be made at least every 256 bytes to ensure that the instruction buffer doesn’t overflow.

Micromega Corporation 2 uM-FPU V3.1 and dsPIC or PIC24 C Compiler

Micromega Corporation 3 uM-FPU V3.1 and dsPIC or PIC24 C Compiler

Micromega Corporation 4 uM-FPU V3.1 and dsPIC or PIC24 C Compiler

fpu_write
void fpu_write(unsigned char bval1);
void fpu_write2(unsigned char bval1, unsigned char bval2);
void fpu_write3(unsigned char bval1, unsigned char bval2, unsigned char bval3);
void fpu_write4(unsigned char bval1, unsigned char bval2,

 unsigned char bval3, unsigned char bval4);
These routines are used to send instructions and data to the FPU. Each parameter specifies an 8-bit value to be sent
to the FPU.

fpu_writeWord
void fpu_writeWord(int wval);

This routine is used to send a 16-bit value to the FPU.

fpu_writeLong
void fpu_writeLong(long lval);

This routine is used to send a 32-bit long integer value to the FPU.

fpu_writeFloat
void fpu_writeFloat(float fval);

This routine is used to send a 32-bit floating point value to the FPU

fpu_writeString
void fpu_writeString(char *s);

This routine is used to write a zero-terminated string to the FPU.

fpu_read
char fpu_read(void);

This routine reads an 8-bit value from the FPU with no initial read delay. This routine is used by the support
routines and is not normally called directly by the user program. The initial read delay is not included. User
programs would normally use the fpu_readByte function.

fpu_readByte
char fpu_read(void);

This routine reads an 8-bit value from the FPU. The initial read delay is included.

fpu_readWord
int fpu_readWord(void);

This routine reads an 16-bit value from the FPU. The initial read delay is included.

fpu_readLong
long fpu_readLong(void);

This routine reads an 32-bit long integer value from the FPU. The initial read delay is included.

fpu_readFloat
float fpu_readFloat(void);

This routine reads an 32-bit floating point value from the FPU. The initial read delay is included.

fpu_readString
char *fpu_readString(char *s);

This routine is used to read a zero-terminated string from the FPU and store it at the location pointed at by the
passed parameter. The initial read delay is included and a pointer to the string is returned.

Micromega Corporation 3 uM-FPU V3.1 and dsPIC or PIC24 C Compiler

Micromega Corporation 4 uM-FPU V3.1 and dsPIC or PIC24 C Compiler

Micromega Corporation 5 uM-FPU V3.1 and dsPIC or PIC24 C Compiler

fpu_readStatus
unsigned char fpu_readStatus(void);

This routine reads the status byte from the FPU. An fpu_wait call is done internally, before the READSTATUS
instruction is sent. The initial read delay is included.

fpu_readDelay
void fpu_readDelay(void);

After a read instruction is sent, and before the first data is read, a setup delay is required to ensure that the FPU is
ready to send data. Note: All of the fpu_read routines include an fpu_readDelay call, so this function is not
not usually called directly the user program.

Function Descriptions for fpu_print.c

print_version
void print_version(void);

This routine sends the FPU version string to the serial port.

print_float
void print_float(char format);

The value in register A is sent to stdout as a floating point string. The format parameter is used to specify the
desired format. If the format parameter is zero, the length of the displayed value is variable and can be from 3 to
12 characters in length. Up to eight significant digits will be displayed if required, and very large or very small
numbers are displayed in exponential notation. The special cases of NaN (Not a Number), +Infinity, -Infinity, and
-0.0 are handled. Examples of the display format are as follows:

1.0 NaN 0.0
1.5e20 Infinity -0.0
3.1415927 -Infinity 1.0
-52.333334 -3.5e-5 0.01

If the format parameter is non-zero, it determines the display format. The tens digit specifies the total number of
characters to display and the ones digit specifies the number of digits after the decimal point. If the value is too large
for the format specified, then asterisks will be displayed. If the number of digits after the decimal points is zero, no
decimal point will be displayed. Examples of the display format are as follows:

Value in A register format Display format
123.567 61 (6.1) 123.6
123.567 62 (6.2) 123.57
123.567 42 (4.2) *.**
0.9999 20 (2.0) 1
0.9999 31 (3.1) 1.0

print_long
void print_float(char format);

The value in register A is sent to stdout as a signed long integer string. The format parameter is used to specify the
desired format. If the format parameter is zero, the length of the displayed value is variable and the displayed
value can range from 1 to 11 characters in length. Examples of the display format are as follows:

1
500000
-3598390

Micromega Corporation 4 uM-FPU V3.1 and dsPIC or PIC24 C Compiler

Micromega Corporation 5 uM-FPU V3.1 and dsPIC or PIC24 C Compiler

If the format parameter is non-zero, it determines the display format. A value between 0 and 15 specifies the width
of the display field for a signed long integer. The number is displayed right justified. If 100 is added to the format
value the value is displayed as an unsigned long integer. If the value is larger than the specified width, asterisks will
be displayed. If the width is specified as zero, the length will be variable. Examples of the display format are as
follows:

Value in register A format Display format
-1 10 (signed 10) -1
-1 110 (unsigned 10) 4294967295
-1 4 (signed 4) -1
-1 104 (unsigned 4) ****
0 4 (signed 4) 0
0 0 (unformatted) 0
1000 6 (signed 6) 1000

print_fpuString
void print_fpuString(char opcode);

This routine sends the contents of the FPU string buffer to stdout. The opcode can be READSTR to read the entire
string, or READSEL to read the current string selection.

print_CRLF
void print_CRLF(void);

This routine sends a carriage return and linefeed to stdout.

Further Information
The following documents are also available:

uM-FPU V3.1 Datasheet provides hardware details and specifications
uM-FPU V3.1 Instruction Reference provides detailed descriptions of each instruction
uM-FPU Application Notes various application notes and examples

Check the Micromega website at www.micromegacorp.com for up-to-date information.

